Cause-Specific Senescence: Classifying Causes of Death According to the Rate of Aging

Carlo G. Camarda¹, Markéta Pechholdová¹,², France Meslé¹

(¹ Institut National d'Études Démographiques, Paris, France (² Department of Demography, University of Economics, Prague, Czech Republic)

IDEAS
- Background: Recent International Classification of Diseases (ICD10) contains around 12,000 causes of death (CODs).
- Reasoning: Cause-specific data contain two types of information: medical content based on the definition; intrinsic age profile.
- Research question: Are there common age-specific mortality patterns based on CODs?

DATA
- Death counts: individual-level data from Czech Republic in 1998-2011 by CODs.
- Exposures: Human Mortality Database.
- Selection: males, 1-year age group 30-100; 3-digits level of ICD10; CODs with 10+ available data-points over ages.
- Final dataset: Deaths $D = (d_i)$, Exposures $e = (e_i)$, $i = (1, \ldots, m-71)$ ages, $c = (1, \ldots, n = 531)$ CODs.

CLUSTERING
- We aim to classify all n CODs by $r(s)$ reduced to a vector of $(s - 1)$ lagged-coefficients for each COD c:
 $$\begin{align*}
 \alpha_1, \alpha_2, \ldots, \alpha_{s-1} \\
 \end{align*}$$
- We use k-means clustering which allows to:
 1. classify cause-specific rates of aging
 2. extract distinct aging profiles (cluster centers).
- We partition $n = 531$ observations into k sets $S = \{S_1, S_2, \ldots, S_k\}$:
 $$\begin{align*}
 \arg\min \sum_{i=1}^{k} \sum_{c \in S_i} (\alpha^2 - \hat{\alpha}_i)^2 \\
 \end{align*}$$

ESTIMATING RATE OF AGING
- Cause-specific rate of aging:
 $$r(x) = \frac{\mu(x)}{\mu'(x)}$$
- $\mu'(x)$: cause-specific force of mortality
- Non-parametric data model:
 $$\mu''(x) - B^2 \mu = 0$$
- B^2: matrix of order $1 - 17$ B-splines of degree q equally spaced by a distance h:
 $$\hat{\beta}$$: cause-specific penalized coefficients
- Cause-specific rate of aging is both:
 1. derived by the linear combination of B-splines:
 2. obtained by difference operator on coefficients.
- $r = C \hat{\beta}^T = \hat{\beta}^T \cdot \alpha$
- C: matrix of first order difference of B^T, α: first difference of $\hat{\beta}$

CLUSTERING
- Decreasing rate of aging
- log-linear force of mortality
- rapid increase of $\mu(x)$ at age 60 and deceleration afterward.

SUMMARY
- Using non-parametric techniques, we estimated instantaneous cause-specific rate of aging.
- We carried out a cluster analysis on cause-specific rate of aging.
- We selected the optimal number of clusters.
- We identified three distinct age patterns of human mortality:
 1. age-independent
 2. rising constantly with age
 3. decelerating mortality at older ages.
- This grouping could be used to refine mortality model and forecast analysis.

CAUSE-SPECIFIC SENESCENCE PROTOTYPES

The work was supported by AXA project on Mortality Divergence and Causes of Death, Project ANR-12-FRAL-0003-01 DIMOCHA and the Czech Science Foundation Research Grant GA CR P404/13-41382P.